Minerals characterization of stainless steel EAF and AOD slag

S.G. Huang, D. Geysen, P.T. Jones, B. Blanpain
Dept. of Metallurgy and Materials Engineering, K.U. Leuven, Belgium

Abstract

The aim of the present slag mapping is to provide the knowledge on the mineral phase and chemical composition of hot stage and slag yard slags. A comprehensive mapping of stainless steel slag from EAF and AOD processes, collected both from high temperature and slag yards was carried out. Minerals of stainless steel EAF and AOD slag oriented to slag stability was investigated by using XRF, Q-XRD and SEM. The samples were collected before the de-slugging process and from the cooled slag yard, respectively. Analysis indicated that both the high and room temperature EAF slags consist of mainly merwinite, akermanite and spinel phases. Cr-oxide exists mainly in the (Mg, Al) spinel phase. With boron treatment (Na$_2$B$_4$O$_7$) and cooling, the AOD slags exhibit significantly different minerals between the high and cooled slags. The major minerals of the hot AOD slag (austenitic & ferritic steels) is γ-C$_{2}$S (C2S), merwinite, bredigite and cuspidine phases. The stabilized C2S phase was found in the yard ferritic AOD slags (C:S: ~ 2.0) after boron treatment and cooling.

Results

Chemical composition of the AS and FS EAF slag

<table>
<thead>
<tr>
<th>Sample</th>
<th>Hot A</th>
<th>Hot B</th>
<th>Yard A</th>
<th>Yard B</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/S</td>
<td>0.77</td>
<td>1.05</td>
<td>0.74</td>
<td>0.95</td>
</tr>
<tr>
<td>Cr$_2$O$_3$ Total</td>
<td>18.2 wt%</td>
<td>6.1 wt%</td>
<td>15.8 wt%</td>
<td>5.6 wt%</td>
</tr>
<tr>
<td>Spinel</td>
<td>76 Cr$_2$O$_3$, 66 Cr$_2$O$_3$, 78 Cr$_2$O$_3$, 66 Cr$_2$O$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix</td>
<td>6.6 Cr$_2$O$_3$, 2.1 Cr$_2$O$_3$, 5.5 Cr$_2$O$_3$, 1.8 Cr$_2$O$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Both EAF AS & FS slags are located in a single liquid slag area at 1600 °C. Low C/S value leads to high MgO dissolution.

AS AOD slag

γ-C$_{2}$S (10-60 wt%)
Merwinite (10-40 wt%)
Bredigite (20-30 wt%)
Cuspidine (14-20 wt%)
CaF$_2$ (2-5 wt%)
MgO (2-7 wt%)

γ-C2S + Akermanite + Spinel

FS AOD slag

γ-C$_{2}$S (60-85 wt%)
Bredigite (0-21 wt%)
Cuspidine (0-3 wt%)
CaF$_2$ (3-7 wt%)
MgO (7-15 wt%)

β-C$_{2}$S (30-65 wt%)
Bredigite (10-35 wt%)
Cuspidine (15-30 wt%)
CaF$_2$ (0 wt%)
MgO (4-12 wt%)

C2S phase: High γ-C2S
Stabilizer: No

Conclusions

- It is not necessary to treat the EAF slags with borate due to its low basicity and lack of C2S. Cr-oxide is mainly distributed in the spinel phase. The AS AOD slags (C:S: 1.4~1.7) contain the unstable γ-C2S phase at hot stage. With borate addition and cooling, the slag yard slags change into intact aggregates. The much higher content of merwinite and cuspidine phases in the yard slag indicates that the dissolution of MgO and CaF$_2$ in the C2S phase during cooling.
- The high C/S value in the FS AOD slag results in the formation of high unstable C2S phase, which need to be stabilized with boron treatment to maintain slag integrity.

The authors gratefully acknowledge Aperam (former ArcelorMittal Stainless Europe) and the IWT O&O project 090594 for the financial support.